

Mr. Wright's Math Extravaganza

Precalculus

Three Dimensional Analytic Geometry

Level 2.0: 70% on test, Level 3.0: 80% on test, Level 4.0: level 3.0 and success on applications

Score	I Can Statements		
4.0	□ I can demonstrate in-depth inferences and applications that go beyond what was taught.		
3.5	In addition to score 3.0 performance, partial success at score 4.0 content		
	□ I can graph points and equations in a three-dimensional rectangular coordinate system.		
3.0	I can use vector operations in three dimensions.		
	I can write equations for lines and planes in three dimensions.		
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content		
2.0	I can calculate 3D distance and midpoint.		
	I can graph spheres.		
	I can find the angle between vectors.		
	I can evaluate a cross product.		
	I can find the angle between two planes.		
	I can graph planes.		
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content.		
1.0	With help, partial success at score 2.0 content and score 3.0 content.		
0.5	With help, partial success at score 2.0 content but not at score 3.0 content.		
0.0	Even with help, no success.		

Precalculus

11-01 3-D Coordinate System

Precalculus

11-02 Vectors in space

Vectors in 3-D

	$\vec{v} = \langle v_1, v_2, v_2 \rangle$		
• To find a vector from the	$v = (v_1, v_2, v_3)$ noint (n_1, n_2, n_3) to the	point (a_1, a_2, a_3)	
	$\vec{v} = \langle a_1 - n_1, a_2 - n_2, a_3 - n_2 \rangle$	point (q1, q2, q3)	
If $\vec{v} = \langle v_1, v_2, v_2 \rangle$ and $\vec{u} = \langle u_1, u_2, u_2 \rangle$.	· (41 P1)42 P2)43 P3)		
Addition			
• Add corresponding			
	$\vec{v} + \vec{u} = \langle v_1 + u_1, v_2 + u_2, v_3 + u_3 \rangle$		
• Scalar multiplication	× 1 1' 2 2' 3 3'		
o			
	$c\vec{v} = \langle cv_1, cv_2, cv_3 \rangle$		
Dot Product	1 2 3		
	$\vec{v} \cdot \vec{u} = v_1 u_1 + v_2 u_2 + v_3 u_3$		
Magnitude			
	$\ \vec{v}\ = \sqrt{v_1^2 + v_2^2 + v_3^2}$		
• Unit vector in the direction of \vec{u}	N		
• Onit vector in the direction of <i>v</i>	11		
• Angle between vectors			
· migie between vectors	$\vec{u} \cdot \vec{v} = \ \vec{u}\ \ \vec{v}\ \cos \theta$		
• If $\theta = 90^\circ$ (and $\vec{u} \cdot \vec{v} =$) then vectors are		
• If $\vec{u} = c\vec{v}$, then vectors are), alon vectore al c		
Let $\vec{m} = \langle 1 \ 0 \ 3 \rangle$ and $\vec{n} = \langle -2 \ 1 \ -4 \rangle$			
Find $\ \vec{m}\ $	Find unit vector in direct	tion of \overline{m}	
Find $\vec{m} + 2\vec{n}$	Find $\vec{m} \cdot \vec{n}$		
Find the angle between \overline{m} and \overline{n}			

Are $\vec{p} = \langle 1, 5, -2 \rangle$ and $\vec{q} = \left\langle -\frac{1}{5}, -1, \frac{2}{5} \right\rangle$ parallel, orthogonal, or neither?

Are P(1, -1, 3), Q(0, 4, -2), and R(6, 13, -5) collinear?

Precalculus

11-03 Cross Products

Cross Product

- $\hat{\iota}$ is ______vector in x, \hat{j} is unit vector in y, and \hat{k} is unit vector in z
- $\vec{u} = u_1 \hat{\iota} + u_2 \hat{j} + u_3 \hat{k}$ and $\vec{v} = v_1 \hat{\iota} + v_2 \hat{j} + v_3 \hat{k}$

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{\iota} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

If $\vec{u} = \langle -2, 3, -3 \rangle$ and $\vec{v} = \langle 1, -2, 1 \rangle$, find $\vec{u} \times \vec{v}$

Properties of Cross Products

- $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$
- $\vec{u} \times (\vec{v} + \vec{w}) = (\vec{u} \times \vec{v}) + (\vec{u} \times \vec{w})$
- $c(\vec{u} \times \vec{v}) = c\vec{u} \times \vec{v} = \vec{u} \times c\vec{v}$
- $\vec{u} \times \vec{u} = 0$
- If $\vec{u} \times \vec{v} = 0$, then \vec{u} and \vec{v} are parallel
- $\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$
- $\vec{u} \times \vec{v}$ is orthogonal to \vec{u} and \vec{v}
- $\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta$

Area of a Parallelogram

 $\|\vec{u} \times \vec{v}\|$ where \vec{u} and \vec{v} represent adjacent sides

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Volume of Parallelepiped

 $V = |\vec{u} \cdot (\vec{v} \times \vec{w})|$ where \vec{u} , \vec{v} , and \vec{w} represent adjacent edges

PO

 $\vec{n} = \langle a, b, c \rangle$

ax + by + cz + d = 0

 $P(x_1, y_1, z_1)$

Q(x, y, z)

 $\langle a, b, c \rangle$

Precalculus

11-04 Lines and Planes in Space

Lines

General form

$$\langle x - x_1, y - y_1, z - z_1 \rangle = \langle at, bt, ct \rangle$$

Parametric Equations of Line

 $x = at + x_1$ $y = bt + y_1$ $z = ct + z_1$

Symmetric Equation of Line

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$

Find a set of parametric equations of the line that passes through (1, 3, -2) and (4, 0, 1).

Planes

Standard form

$$a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$$

General form

$$ax + by + cz + d = 0$$

Find the general equation of plane passing through A(3, 2, 2), B(1, 5, 0), and C(1, -3, 1)

