Precalculus

11-01 3-D Coordinate System

Points in 3 dimensions

- (x, y, z)
- Graph by moving out the \qquad , over the \qquad , then up the \qquad .
Graph $A(5,6,3)$ and $B(-2,-4,0)$

Distance Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Midpoint Formula

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Equation of Sphere

$$
(x-h)^{2}+(y-k)^{2}+(z-j)^{2}=r^{2}
$$

Center is $(h, k, j), r=$ radius

- Graph by plotting the and moving each direction the \qquad
Graph $(x-2)^{2}+(y+1)^{2}+(z+1)^{2}=16$

Precalculus

11-02 Vectors in space

Vectors in 3-D

$$
\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle
$$

- To find a vector from the \qquad point $\left(p_{1}, p_{2}, p_{3}\right)$ to the \qquad point $\left(q_{1}, q_{2}, q_{3}\right)$

$$
\vec{v}=\left\langle q_{1}-p_{1}, q_{2}-p_{2}, q_{3}-p_{3}\right\rangle
$$

If $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$,

- Addition
- Add corresponding \qquad

$$
\vec{v}+\vec{u}=\left\langle v_{1}+u_{1}, v_{2}+u_{2}, v_{3}+u_{3}\right\rangle
$$

- Scalar multiplication
- \qquad

$$
c \vec{v}=\left\langle c v_{1}, c v_{2}, c v_{3}\right\rangle
$$

- Dot Product

$$
\vec{v} \cdot \vec{u}=v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3}
$$

- Magnitude

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

- Unit vector in the direction of \vec{v}

$$
\frac{\vec{v}}{\|\vec{v}\|}
$$

- Angle between vectors

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

- If $\theta=90^{\circ}$ (and $\vec{u} \cdot \vec{v}=$ \qquad), then vectors are \qquad
- If $\vec{u}=c \vec{v}$, then vectors are

Let $\vec{m}=\langle 1,0,3\rangle$ and $\vec{n}=\langle-2,1,-4\rangle$
Find $\|\vec{m}\|$
Find unit vector in direction of \vec{m}

Find $\vec{m}+2 \vec{n}$
Find $\vec{m} \cdot \vec{n}$

Find the angle between \vec{m} and \vec{n}
\qquad

Are $\vec{p}=\langle 1,5,-2\rangle$ and $\vec{q}=\left\langle-\frac{1}{5},-1, \frac{2}{5}\right\rangle$ parallel, orthogonal, or neither?

Are $P(1,-1,3), Q(0,4,-2)$, and $R(6,13,-5)$ collinear?

Precalculus

11-03 Cross Products

Cross Product

- $\hat{\imath}$ is \qquad vector in $x, \hat{\jmath}$ is unit vector in y, and \hat{k} is unit vector in z
- $\vec{u}=u_{1} \hat{\imath}+u_{2} \hat{\jmath}+u_{3} \hat{k}$ and $\vec{v}=v_{1} \hat{\imath}+v_{2} \hat{\jmath}+v_{3} \hat{k}$

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

If $\vec{u}=\langle-2,3,-3\rangle$ and $\vec{v}=\langle 1,-2,1\rangle$, find $\vec{u} \times \vec{v}$

Properties of Cross Products

- $\vec{u} \times \vec{v}=-(\vec{v} \times \vec{u})$
- $\vec{u} \times(\vec{v}+\vec{w})=(\vec{u} \times \vec{v})+(\vec{u} \times \vec{w})$
- $c(\vec{u} \times \vec{v})=c \vec{u} \times \vec{v}=\vec{u} \times c \vec{v}$
- $\vec{u} \times \vec{u}=0$
- If $\vec{u} \times \vec{v}=0$, then \vec{u} and \vec{v} are parallel
- $\vec{u} \cdot(\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w}$
- $\vec{u} \times \vec{v}$ is orthogonal to \vec{u} and \vec{v}
- $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$

Area of a Parallelogram

$\|\vec{u} \times \vec{v}\|$ where \vec{u} and \vec{v} represent adjacent sides

Triple Scalar Product (shortcut)

$$
\vec{u} \cdot(\vec{v} \times \vec{w})=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

Volume of Parallelepiped

$V=|\vec{u} \cdot(\vec{v} \times \vec{w})|$ where \vec{u}, \vec{v}, and \vec{w} represent adjacent edges

Precalculus

11-04 Lines and Planes in Space

Lines

General form

$$
\left\langle x-x_{1}, y-y_{1}, z-z_{1}\right\rangle=\langle a t, b t, c t\rangle
$$

Parametric Equations of Line

$$
\begin{aligned}
x & =a t+x_{1} \\
y & =b t+y_{1} \\
z & =c t+z_{1}
\end{aligned}
$$

Symmetric Equation of Line

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

Find a set of parametric equations of the line that passes through $(1,3,-2)$ and $(4,0,1)$.

Planes

Standard form

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
$$

General form

$$
a x+b y+c z+d=0
$$

Find the general equation of plane passing through $A(3,2,2), B(1,5,0)$, and $C(1,-3,1)$

Angle between two planes

- Find the angle between \qquad vectors
- Normal vectors are \qquad in the equations of the plane

$$
\left|\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}\right|=\left\|\overrightarrow{n_{1}}\right\|\left\|\overrightarrow{n_{2}}\right\| \cos \theta
$$

Distance between a Point and a Plane

$$
\begin{gathered}
D=\left\|\operatorname{proj}_{\vec{n}} \stackrel{\rightharpoonup}{P Q}\right\| \\
D=\frac{|\overrightarrow{P Q} \cdot \vec{n}|}{\|\vec{n}\|}
\end{gathered}
$$

\qquad

Sketch $3 x+4 y+6 z=24$

